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Reexamination of the Perfectness Concept for 
Equilibrium Points in Extensive Games 

By R. SELTEN, Bielefeld 1) 

1. Introduction 

The concept of a perfect equilibrium point has been introduced in order to 
exclude the possibility that disequilibrium behavior is prescribed on unreached 
subgames [SELTEN 1965 and 1973]. Unfortunately this definition of perfectness 
does not remove all difficulties which may arise with respect to unreached parts 
of the game. It is necessary to reexamine the problem of defining a satisfactory 
non-cooperative equilibrium concept for games in extensive form. Therefore a 
new concept of a perfect equilibrium point will be introduced in this paper2). 

In retrospect the earlier use of the word "perfect" was premature. Therefore 
a perfect equilibrium point in the old sense will be called "subgame perfect". 
The new definition of perfectness has the property that a perfect equilibrium 
point is always subgame perfect but a subgame perfect equilibrium point may 
not be perfect. 

It will be shown that every finite extensive game with perfect recall has at least 
one perfect equilibrium point. 

Since subgame perfectness cannot be detected in the normal form, it is clear 
that for the purpose of the investigation of the problem of perfectness, the normal 
form is an inadequate representation of the extensive form. It will be convenient 
to introduce an "agent normal form" as a more adequate representation of games 
with perfect recall. 

2. Extensive Games with Perfect Recall 

In this paper the words extensive game will always refer to a finite game in 
extensive form. A game of this kind can be described as a sextuple. 

F = (K,P, U,C,p,h) (1) 

where the constituents K, P, U, A, p and h of F are as follows a) : 

~) Professor R. SELTE•, Institute of Mathematical Economics, University of  Bietefeld, Schlol3 
Rheda, 484 Rheda, Germany. 

2) The idea to base the definition of a perfect equilibrium point on a model of slight mistakes as 
described in section 7 is due to JOhN C. HARSANYL The author's earlier unpublished attempts at a 
formalization of this concept were less satisfactory. I am very grateful to JOHN C. HARSANVI who 
strongly influenced the content o f  this paper. 

3) The notation is different from that used by KuI~rs [1953]. 
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The game tree: 
The game tree K is a finite tree with a dis t inguished verte\  o, the origin of K. 

The sequence of vertices and edges which connects o with a vertex x is called the 

path to x. We say that  x comes before v or that v comes after x if .~ is different 

from y and the pa th  to v-contains the path to x. An endpoint is a vertex - with the 

proper ty  that  no vertex comes after z. The set of all endpoin ts  is denoted  by Z. 

A path  to an endpoin t  is called a play. The edges are also called alternatires. 
An al ternat ive at x is an edge which connects x with a vertex after x. The set of 

all vertices of K which are not  endpoints ,  is denoted  by X. 

The player partition: 
The player  par t i t ion  P = (Po . . . . .  P,,) par t i t ions  X into player set.s. P; is called 

player  i's p layer  set (Player  0 is the " r a n d o m "  player  who represents  the r a n d o m  

mechanisms  responsible  for the r andom decisions in the game.l A player  set 

may be empty.  The player  sets PC with i = 1 . . . . .  n are called personal player sets. 

The information partition: 
F o r  i = 1 ..... n a subset u of P~ is called eligible (as an informat ion  set} if n is 

not  empty,  if every play intersects u at most  once and if the number  of a l ternat ives  

at x is the same for every x e u. A subset u e P0 is called eligible if it contains  

exactly one vertex. The information partition U is a refinement of the player  

par t i t ion  P into eligible subsets u of the player  sets. These sets u are called infor- 
mation sets. The informat ion  sets u with u _c P~ are called informat ion  sets of 

player  i. The set of all in format ion  sets of p l a y e r / i s  denoted  by U~. The informat ion  

sets of player  1 . . . . .  n are called personal informat ion sets. 

The choice partition: 
F o r  u ~ U let A,, be the set of all a l ternat ives at vertices x ~ u. We say that  a 

subset c of A,  is eligible (as a choice) if it contains  exactly one a l ternat ive at x for 

every vertex x e u. The choice partition C par t i t ions  the set of all edges of K into 

eligible subsets c of the A, with u e U. These sets c are called choices. The choices 

c which are subsets of A, are called choices at u. The set of all choices at u is denoted  

by C,. A choice at a personal  informat ion  set is called a personal  choice. A choice 

which is no t  personal  is a random choice. We say that the vertex x comes after 

the choice c if one of the edges in c is on the path  to x. In this case we also say 

tha t  c is on the pa th  to x. 

The probability assignment: 
A probab i l i ty  d i s t r ibu t ion  p, over C, is called completely mixed if it assigns a 

posi t ive p robab i l i ty  p,(c) to every c e C,,. The probability assignment p is a function 

which assigns a comple te ly  mixed p robab i l i ty  d i s t r ibu t ion  p~ over C, to every 

u e Uo. (p specifies the probabi l i t i es  of the r andom choices.t  
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The payoff.function : 
The payoff function h assigns a vector h(z) = (hi (z),...,hn(z)) with real numbers 

as components to every endpoint z of K. The vector h(z) is called the payoff vector 
at z. The component  hi(z ) is player i's payoff at z. 

Perfect recall: 
An extensive game F = (K,P, U, C,p,h) is called an extensive game with perfect 

recall if the following condition is satisfied for every player i =  1 .. . . .  n and any 

two information sets u and v of the same player i: if one vertex y e v comes after 
a choice c at u then every vertex x e v comes after this choice c4). 

Interpretation: 
In a game with perfect recall a player i who has to make a decision at one of 

his information sets v knows which of his other information sets have been reached 

by the previous course of the play and which choices have been taken there. 

Obviously a player always must have this knowledge if he is a person with the 
ability to remember what he did in the past. Since game theory is concerned 
with the behavior of absolutely rational decision makers whose capabilities of 

reasoning and memorizing are unlimited, a game, where the players are individuals 
rather than teams, must have perfect recall. 

Is there any need to consider games where the players are teams rather than 
individuals? In the following we shall try to argue that at least as far as strictly 
non-cooperative game theory is concerned the answer to this question is no. 

In principle it is always possible to model any given interpersonal conflict situation 

in such a way that every person involved is a single player. Several persons who 
form a team in the sense that all of them pursue the same goals can be regarded 

as separate players with identical payoff functions. Against this view one might 

object that a team may be united by more than accidentally identical payoffs. 
The team may be a preestablished coalition with special cooperative possibilities 

not open to an arbitrary collection of persons involved in the situation. This is 
not a valid objection. Games with preestablished coalitions of this kind are outside 
the framework of strictly non-cooperative game theory. In a strictly non-co- 
operative game the players do not have any means of cooperation or coordination 
which are not explicitly modelled as parts of the extensive form. If there is something 
like a preestablished coalition, then the members must appear as separate players 

and the special possibilities of the team must be a part of the structure of the 
extensive game. 

In view of what has been said no room is left for strictly non-cooperative 
extensive games without perfect recall. In the framework of strictly non-cooperative 
game theory such games can be rejected as misspecified models of interpersonal 
conflict situations. 

4) The concept of perfect recall has been introduced by H. W. KUt~N [1953l. 
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3. Strategies, Expected Payoff and Normal Form 

In this section several definitions are introduced which refer to an extensive 
game F = (K,P,U,A,p,h). 

Local strategies: 
A local strategy b~u at the information set u s U~ is a probability distribution 

over the set Cu of the choices at u; a probability bzu(c) is assigned to every choice 
c at u. A local strategy b~, is called pure if it assigns 1 to one choice c at u and 0 
to the other choices. Wherever this can be done without danger of confusion no 
distinction will be made between the choice c and the pure local strategy which 
assigns the probability 1 to c. 

Behavior strategies: 
A behavior strategy b~ of a personal player i is a function which assigns a local 

strategy b~ to every u e U~. The set of all behavior strategies of player i is denoted 
by Bi. 

Pure strategies: 
A pure strategy n~ of player i is a function which assigns a choice c at u (a pure 

local strategy) to every u e U~. Obviously a pure strategy is a special behavior 
strategy. The set of all pure strategies of player i is denoted by//~. 

Mixed strategies: 
A mixed strategy q~ of player i is a probability distribution over Hi; a probability 

q~(n~) is assigned to every n~ ~//~. The set of all mixed strategies q~ of player i is 
denoted by Q~. Wherever this can be done without danger of confusion no distinc- 
tion will be made between the pure strategy rcz and the mixed strategy q~ which 
assigns 1 to n~. Pure strategies are regarded as special cases of mixed strategies. 

Behavior strategy mixtures: 
A behavior strategy mixture s~ for player i is a probability distribution over 

B~ which assigns positive probabilities s~(b~) to a finite number of elements of 
B~ and zero probabilities to the other elements of B~. No distinction will be made 
between the behavior strategy b~ and the behavior strategy mixture which assigns 
I to b~. The set of all behavior strategy mixtures of player i is denoted by Ss. Obvi- 
ously pure strategies, mixed strategies and behavior strategies can all be regarded 
as special behavior strategy mixtures. 

Combinations: 
A combination s = (s 1 ... . .  s,) of behavior strategy mixtures is an n-tuple of 

behavior strategy mixtures sz e S~, one for each personal player. Pure strategy 
combinations rr = (Tzt,...,~,), mixed strategy combinations and behavior strategy 
combinations are defined analogously. 
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Realization probabilities: 
A player i who plays a behavior strategy mixture si behaves as follows: He 

first employs a random mechanism which selects one of the behavior strategies 
b~ with the probabilities s~(b~). He then in the course of the play at every u ~ U~ 
which is reached by the play selects one of the choices c at u with the probabilities 
b~u(C). Let s = (sl ..... s,) be a combination of behavior strategy mixtures. On the 
assumption that the s~ are played by the players we can compute a realization 
probability p(x,s) o f x  under s for every vertex x ~K. This probability p(x,s) is 
the probability that x is reached by the play, if s is played. Since these remarks 

make it sufficiently clear, how p(x,s) is defined, a more precise definition of 
p(x,s) will not be given here. 

Expected payoffs: 
With the help of the realization probabilities an expected payoff vector 

H(s) = (Hi(s) ..... Hn(S)) can be computed as follows: 

H(s) = y~ p(z,s)h(z).  (2) 
zEZ 

Since pure strategies, mixed strategies and behavior strategies are special cases 
of behavior strategy mixtures, the expected payoff definition (2) is applicable 
here, too. 

Normal form: 
A normal form G = (H1, ...,Hn; H) consists of n finite non-empty and pairwise 

non-intersecting pure strategy sets I1~ and an expected payoff function H defined 
on /7 = lI~x ..... Xlln. The expected payoff function H assigns a payoff vector 
H(rc) = (Hi(re), ...,H,(r0) with real numbers as components to every rc ~/ / .  For  
every extensive game F the pure strategy sets and the expected payoff function 
defined above generate the normal form of F. 

In order to compute the expected payoff vector for a mixed strategy com- 
bination, it is sufficient to know the normal form of F. The same is not true for 
combinations of behavior strategies. As we shall see, in the transition from the 
extensive form to the normal form some important information is lost. 

4. KUHN'S Theorem 

H. W. KUHN [1953, p. 213] has proved an important theorem on games with 
perfect recall. In this section KUt4N'S theorem will be restated in a slightly changed 
forrrL For this purpose some further definitions must be introduced. As before, 
these definitions refer to an extensive game F = (K,P,U,A,p,h). 

Notational convention: 
Let s = (sl . . . . .  s,) be a combination of behavior strategy mixtures and let t~ 

be a behavior strategy mixture for player i. 
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The combina t ion  (sl . . . . .  s~_ 1, t% Si ~ ! . . . . .  Sn) which results from s, if si is replaced 
by t~ and the other components  of s remain unchanged,  is denoted by s/t~. The 

same notat ional  convent ion is also applied to other types of strategy combinat ions.  

Realization equivalence." 
Let s'~ and si' be two behavior  strategy mixtures for player i. We say that sl and 

s'~' are realization equivalent if for every combina t ion  s of behavior  strategy mixtures 
we have: 

p(x,s/s'i) = p(x,s/si') for every x E K .  (3) 

Payoff equivalence: 
Let s'~ and s',-' be two behavior  strategy mixtures for player i. We say that s'z and 

4' are payoff equivalent if for every combina t ion  s of behavior  strategy mixtures 
we have 

H(s/s'~) = H(s/s'i' ) . (4) 

Obviously  sl and s',: are payoff equivalent if they are realization equivalent, 
since (3) holds for the endpoints  z. 

Theorem i (KUHN'S theorem): 
In every extensive game with perfect recall a realization equivalent behavior  

's t rategy b~ can be found for every behavior  strategy mixture  ss of a personal  
player  i. 

In order to prove  this theorem we introduce some further definitions. 

Conditional choice probabilities: 
Let s = (sl . . . . .  s,) be a combina t ion  of behavior  strategy mixtures and let x 

be a vertex in an informat ion set u of a personal  player i, such that  p(x,s) > O. 
For  every choice c at u we define a conditional choice probability #(c,x,s). The 

choice c contains an edge e at x; this edge e connects x with another  vertex y. 
The probabi l i ty  ll(c,x,s) is computed  as follows: 

p(y,s) (5) 
~(c,x,s) = p(x ,s)"  

The probabi l i ty  #(c,x,s) is the condit ional  probabi l i ty  that  the choice c will be 
taken if s is played and x has been reached. 

Lemma 1 : 
In every extensive game F (with or without  perfect recall) on the region of 

those triples (c,x,s) where the condit ional  choice probabi l i ty  I~(C,X,S) is defined 
the condit ional  choice probabil i t ies #(c,x,s) with x s u e  U~ do not depend on 
the components  sj of s with i ~ j. 
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Proof: 
Let b] ..... b~ be the behavior strategies which are selected by s~ with positive 

probabilities ss(N). For p(x,s) > 0 an outside observer, who knows that c has 
been reached by the play but does not know which of the bJ has been selected 
before the beginning of the game, can use this knowledge in order to compute 
posterior probabilities ti(~) from the prior probabilities s~(bJ;). The posterior 
probability t~(~) is proportional to s;(~) multiplied by the product of all prob- 
abilities assigned by N to choices of player i on the path to x. Obviously the 
ti(bi) depend on st but not on the other components of s. The conditiona! choice 
probability #(c,x,s) can be written as follows: 

k 
~(c,x,s) = ~ t~(~)~u(c). (6) 

j = l  

This shows that 14c, x,s) does not depend on the sj with i # j. 

Lemma 2 : 
In every extensive game F with perfect recall, on the region of those triples 

(c,x,s) where the conditional choice probability l~(c,x,s) is defined, we have 

kt(c ,x ,s)=#(c,y ,s)  for x e u  and y ~ u .  (7) 

Proof: 
In a game with perfect recall for x s u, y E u and u ~ U~ player i's choices on 

the path to x are the same choices as his choices on the path to y. (This is not 
true for games without perfect recall). Therefore at x and y the posterior prob- 
abilities for the behavior strategies N occurring in player i's behavior strategy 
mixture si are the same at both vertices. Consequently (7) follows from (6). 

Proof of KUHN'S theorem: 
In view of lemma 1 and lemma 2 the conditional choice probabilities at the 

vertices x in the player set Pi of a personal player can be described by a function 
t~s(C,U, Si) which depends on his behavior strategy mixture s~ and the information 
set u with x ~ u. 

With the help of #;(c,u,s~) we construct the behavior strategy b~ whose existence 
is asserted by the theorem. If for at least one s = (sl .... ,s,) with s; as component 
we have #(x,s) > 0 for some x e u, we define 

bi,(c) = txi(c,u,si). (8) 

The construction of bi is completed by assigning arbitrary local strategies 
bi,, to those u e Uz where no such s can be found. 

It is clear that this behavior strategy b; and the behavior strategy mixture s; 
are realization equivalent. 
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The significance of KUHN'S theorem: 
The theorem shows that in the context of extensive games with perfect recall 

one can restrict one's attention to behavior strategies. Whatever a player can 
achieve by a mixed strategy or a more general behavior strategy mixture can be 
achieved by the realization equivalent and therefore also payoff equivalent 
behavior strategy whose existence is secured by the theorem. 

5. Subgame Perfect Equilibrium Points 

In this section we shall introduce some further definitions which refer to an 
extensive game F = (K,P, U,A,p,h) with perfect recall. In view of Ktn-IN'S theorem 
only behavior strategies are important for such games. Therefore the concepts 
of a best reply and an equilibrium point are formally introduced for behavior 
strategies only. 

Best reply: 
Let b = (bl,...,bn) be a combination of behavior strategies for F. A behavior 

strategy ~ of player i as a best reply to b if we have 

H~(b/~) = max H~(b/b'~). (9) 
b~Bi 

A combination of behavior strategies ~ = (~1 ... . .  ~,) is called a best reply to b 
if for i = 1,...,n the behavior strategy ~ is a best reply to b. 

Equilibrium point: 
A behavior strategy combinatiof~ b* = (b~' .. . . .  b~) is called an equilibrium point 

if b* is a best reply to itself. 

Remark: 
The concepts of a best reply and an equilibrium point can be defined analogously 

for behavior strategy mixtures. In view of KtraN's theorem it is clear that for 
games with perfect recall an equilibrium point in behavior strategies is a special 
Case of an equilibrium point in behavior strategy mixtures. The existence of an 
equilibrium point in behavior strategies for every extensive game with perfect 
recall is an immediate consequence of KUHN'S theorem together with NASH'S 
well known theorem on the existence of an equilibrium point in mixed strategies 
for every finite game [NAsH, 1951-]. 

Subgame : 
Let F = (K,P,U,A,p,h) be an extensive game with or without perfect recall. 

A subtree K' of K consists of a vertex x of K together with all vertices after x and 
all edges of K connecting vertices of K'. A subtree K' is called regular in F, if 
every information set in F, which contains at least one vertice of K', does not 
contain any vertices outside of K'. For every regular subtree K' a subgame F' = 
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(K',P', U',A',p',h) is defined as follows: P', U', A', p' and h' are the restrictions 
of the partitions P, U,A and the functions p and h to K'. 

Induced strategies: 
Let F' be a subgame o f f  and let b = (bl, ...,bn) be a behavior strategy combina- 

tion for F. The restriction of b~ to the information sets of player i in F is a strategy 
b'i of player i for F'. This strategy b'i is called induced by bi on F' and the behavior 
strategy combination b ' =  (b'l ..... b',) defined in this way is called induced by 
bonF' .  

Subgame perfectness: 
A subgame perfect equilibrium point b* = (b* .... ,b*) of an extensive game F 

is an equilibrium point (in behavior strategies) which induces an equilibrium 
point on every subgame of F. 

6. A Numerical Example 

The definition of a subgame perfect equilibrium point excludes some cases of 
intuitively unreasonable equilibrium points for extensive games. In this section 
we shall present a numerical example which shows that not every intuitively 
unreasonable equilibrium point is excluded by this definition. The discussion 
of the example will exhibit the nature of the difficulty. 

The numerical example is the game of figure i. Obviously this game has no 
subgames. Every player has exactly one information set. The game is a game 
with perfect recall. 

liJ lil lil lil 

t, . . . .  ,) 

z 5 

Fig. 1. A numerical example. Information sets are represented by dashed lines. Choices are indicated 
by the letters L and R (standing for "left" and "right"). Payoff vectors are indicated by column vectors 

above the corresponding endpoints 
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Since every player has two choices, L and R, a behavior strategy of player i 
can be characterized by the probability with which he selects R. The symbol Pi 
will be used for this probability. A combination of behavior strategies is represented 
by a triple (P~,P2,P3). 

As the reader can verify for himself without much difficulty the game of figure 1 
has the following two types of equilibrium points: 

Type 1: Pl = 1, P2 = 1, 0 _< P3 < �88 

Type 2: PI = 0, �89 _< P2 ~ 1, P3 = 1. 

Consider the equilibrium points of type 2. Player 2's information set is not 
reached, if an equilibrium point of this kind is played. Therefore his expected 
payoff does not depend on his strategy. This is the reason why his equilibrium 
strategy is best reply to the equilibrium strategies of the other olavers. 

Now suppose that the players believe that a specific type 2 equilibrium point, 
say (0, 1, 1) is the rational way to play the game. Is it really reasonable to believe 
that player 2 will choose R if he is reached? If he believes that player 3 will choose 
R as prescribed by the equilibrium point, then it is better for him to select L where 
he will get 4 instead of R where he will get 1. The same reasoning applies to the 
other type 2 equilibrium points, too. 

Clearly, the type 2 equilibrium points cannot be regarded as reasonable. 
Player 2's choices should not be guided by his payoff expectations in the whole 
game but by his conditional payoff expectations at x3. The payoff expectation 
in the whole game is computed on the assumption that player l's choice is L. 
At x3 this assumption has been shown to be wrong, Player 2 has to assume that 
player l's choice was R. 

For every strategy combination (pl, P2, P3) it is possible to compute player 2's 
conditional payoff expectations for his choices L and R on the assumption that 
his information set has been reached. The same cannot be done for player 3. 
Player 3's information set can be reached in two ways. Consider an equilibrium 
point of type 1, e.g. the equilibrium point (1,1,0). Suppose that (1, 1,0) is believed 
to be the rational way to play the game and assume that contrary to the expecta- 
tions generated by this belief, player 3's information set is reached. In this case 
player 3 must conclude that either player 1 or player 2 must have deviated from 
the rational way of playing the game but he does not know which one. He has 
no obvious way of computing a conditional probability distribution over the 
vertices in his information set, which tells him, with which probabilities he is 
at xx and at x2 if he has to make his choice. 

In the next section a model will be introduced which is based on the idea that 
with some very small probability a player v~ill make a mistake. These mistake 
probabilities do not directly generate a conditional probability distribution over 
the vertice of player 3's information set. As we shall see in section 8 the introduction 
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of slight mistakes may lead to a strategic situation where the rational strategies 
add some small voluntary deviations to the mistakes. 

7. A Model of Slight Mistakes 

There cannot be any mistakes if the players are absolutely rational. Never- 
theless, a satisfactory interpretation of equilibrium points in extensive games 
seems to require that the possibility of mistakes is not completely excluded. This 
can be achieved by a point of view which looks at complete rationality as a limiting 
case of incomplete rationality. 

Suppose that the personal players in an extensive game F with perfect recall 
are subject to a slight imperfection of rationality of the following kind. At every 
information set u there is a small positive probability e,, for the breakdown of 
rationality. Whenever rationality breaks down, every choice c at u will be selected 
with some positive probability qc which may be thought of as determined by 
some unspecified psychological mechanism. Each of the probabilities ~, and qc 
is assumed to be independent of all the other ones. 

Suppose that the rational choice at u is a local strategy which selects c with 
probability Pc. Then the total probability of the choice c will be 

~6c = (1 - e,)pc + ~qc. (4) 

The introduction of the probabilities e~ and q~ transforms the original game 
into a changed game/~ where the players do not completely control their choices. 
A game of this kind will be called a per tu rbed  g a m e  of F. 

Obviously, it is not important whether the Pc or the i~c are considered to be the 
strategic variables of the perturbed game/~. In the following we shall take the 
latter point of view. This means that in/~ every player i selects a behavior strategy 
which assigns probability distributions over the choices c at u to the information 
sets u of player i in such a way that the probability/3c assigned to a choice c at u 
always satisfies the following condition: 

/~c > ~qc. (10) 

The probability/~c is also restricted by the upper bound 1 - e u ( 1 -  qc); it is 
not necessary to introduce this upper bound explicitly since it is implied by the 
lower bounds on the probabilities of the other choices at the same information 
set. With the help of the notation 

~lc = e.,,qc (11) 

condition (10) can be rewritten as follows: 

/3c > ~/c for every personal choice c. (12) 
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Consider a system of positive constants r/c for the personal choices c in F such that 

r/c < 1. (13) 
ca t  u 

Obviously for every system of this kind we can determine positive probabilities 
and qc which generate a perturbed game /~ whose conditions (10) coincide 

with the conditions (12). Therefore we may use the following definition of a 
perturbed game. 

Definition: 
A perturbed game f is a pair (F, ~/) where F is an extensive game with perfect 

recall and ~/is a function which assigns a positive probability ~/c to every personal 
choice c in F such that (13) is satisfied. 

The probabilities ~/c are called minimum probabilities. For every choice c at a 
personal information set u define 

Pc=  1 + r / c -  ~ ~c' (14) 
c' at u 

obviously p~ is the upper bound of/~c implied by the conditions (7). This prob- 
ability p, is called the maximum probability of c. 

Strategies: 
A local strategy for the perturbed game f = (F, g) is a local strategy for F 

which satisfies the conditions (12). A behavior strategy of player i in/~ is a behavior 
strategy of player i in F which assigns local strategies for f to the information 
sets of player i. The set of all behavior strategies of player i for f is denoted by 
Bi. A behavior strategy combination for f is a behavior strategy combination 
b = (~1 ... . .  bn) for F whose components are behavior strategies for F. The set 
of all behavior strategy combinations for/~ is denoted by/~. 

Best replies: 
Let b = (bl . . . . .  bn) be a behavior strategy combination for F. A behavior 

strategy 3i of player i for/~ is called a best reply to b in F if we have 

H~(b/33 --- max Hi(b/b3. (15) 
b'~ B~ 

A behavior strategy combination ~ = (~1 ... . .  ~,) for /~ is called a best reply 
to b in f if every component ~ of b~ is a best reply to b in F. 

Equilibrium point: 
An equilibrium point of/~ is a behavior strategy combination for /~ which 

is a best reply to itself in F. 

Remark: 
Note that there is a difference between a best reply in F and a best reply in F. 

The strategy sets /~i are subsets of the strategy sets Bi. Pure strategies are not 
available in F. 
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8. Perfect Equilibrium Points 

The difficulties which should be avoided by a satisfactory definition of a perfect 
equilibrium point are connected to unreached information sets. There cannot 
by any unreached information sets in the perturbed game. If b is a behavior 
strategy combination for the perturbed game then the realization probability 

p(x, b) is positive for every vertex x of K. This makes it advantageous to look 
at a game F as a limiting case of perturbed games f = (F, t/). In the following a 
perfect equilibrium point will be defined as a limit of equilibritma points for 
perturbed games. 

Sequences of  perturbed games: 
Let F be an extensive game with perfect recall. A sequence f l ,  if2 .... where 

for k = 1,2 .... the game /~k = (F, qk) is a perturbed game of F, is called a test 
sequence for F, if for every choice c of the personal players in F the sequence 
of the minimum probabilities ~ assigned to c by rp converges to 0 for k ~ ~ .  

Let /~1, f2 , . . ,  be a test sequence for F. A behavior strategy combination b* 
for F is called a limit equilibrium point of this test sequence if for k = 1, 2,... an 
equilibrium point ~k of fk  can be found such that for k ~ oo the sequence of 
the b k converges to b*. 

Lemma 3: 
A limit equilibrium point b* of a test sequence f l ,  f 2  .... for an extensive 

game F with perfect recall is an equilibrium point of F. 

Proof: 
The fact that the b k are equilibrium points of the fk can be expressed by the 

following inequalities 

Hi(bk)>_ Hi(~)k/bi) for every bz~/3 k and for i =  1 ..... n. (16) 

L e t / ~ / b e  the intersection of all/3~ with k > m. For k _> m we have 

Hi(i) k) >_ Hi([~k/bi) for every bi ~ B'f . (17) 

Since the expected payoff depends continuously on the behavior strategy 
combination this inequality remains valid if on both sides we take the limits for 
k --, ~ .  This yields: 

H~(b*) >_ Hi(b*/b~) for every bl ~ B~. (18) 

Inequality (18) holds for every m. The closure of the union of all BT' is Bi. This 
together with the continuity of H~ yields: 

Hi(b*) >_ Hi(b*/bi) for every bi~Bi .  (19) 

Inequality (19) shows that b is an equilibrium point of F. 
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Perfect equilibrium point: 
Let F be an extensive game with perfect recall. A perfect equilibrium point 

of F is a behavior strategy combination b* = (b* .... ,b*) for F with the property 
that for at least one test sequence/~1 p2 .... the combination b* is a limit equi- 
librium point of/~1,/~2, . . . .  

Interpretation: 
A limit equilibrium point b* of a test sequence has the property that it is possible 

to find equilibrium points of perturbed games as close to b* as desired. The 
definition of a perfect equilibrium point is a precise statement of the intuitive 
idea that a reasonable equilibrium point should have an interpretation in terms 
of arbitrarily small imperfections of rationality. A test sequence which has b* 
as limit equilibrium point provides an interpretation of this kind. If b* fails to 
be the limit equilibrium point of at least one test sequence b* must be regarded 
as instable against very small deviations from perfect rationality. 

Up to now it has not been shown that perfectness implies subgame perfectness. 
In order to do this we need a lemma on the subgarne perfectness of equilibrium 
points for perturbed games. 

Subgames of perturbed flames: 
Let/~ = (F, ~) be a perturbed game of F. A subflame F' = (F', q') of/"  consists 

of a subgame F' of F and the restriction ff of rt to the personal choices of F'. We 
say that/~' is generated by F'. An equilibrium point b of/~ is called subflame perfect 
if an equilibrium point ~' is induced on every subgame/~' of/~. 

Lemma 3: 
Let F be an extensive game with perfect recall and let P = (F, q) be a perturbed 

game of F. Every equilibrium point of r (in behavior strategies) is subgame 
perfect. 

Proof: 
Let b' be the behavior strategy combination induced by an equilibrium point 
of/~ on a subgame F' of F. Obviously b' is a behavior strategy combination for 

the subgame F' = (F',r/') generated by F'. Suppose that b' fails to be an equilibrium 
point of F'. It follows that for some personal player j a behavior strategy bj for 
1% exists, such that player j's expected payoff for $'/b'j in F' is greater than his 
expected payoff for ~' in F'. Consider the behavior strategy bj for iO which agrees 
with b} on F' and with player j's strategy b~ in b everywhere else. Since the realiza- 
tion probabilities in /~ are always positive player j's expected payoff for b/bj 
must be greater than his expected payoff for ~, Since a behavior strategy bj with 
this property does not exist, ~' is an equilibrium point of/~'. 
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Theorem 2: 
Let F be an extensive game with perfect recall and let 3 be a perfect equilibrium 

point of F. On every subgame U of F a perfect equilibrium point 3' is induced 
by ~ on F'. 

Corollary: 
Every perfect equilibrium point of an extensive game F with perfect recall is a 

subgame perfect equilibrium point of F. 

Proof: 
Let/~a,/~2 .... be a test sequence for F which has ~ as limit equilibrium point. 

Let b ~, $2,... be a sequence of equilibrium points 3 k of /~k. It follows from the 
subgame perfectness of the gk that the subgames of ffk generated by F' form a test 
sequence for F' with ~' as a limit equilibrium point. Therefore 3' is a perfect 
equilibrium point of F'. 

The corollary is an immediate consequence of the fact that a perfect equilibrium 
point is an equilibrium point. (See lemma 3.) 

9. A Second Look at the Numerical Example 

In this section we shall first look at a special test sequence of the numerical 
example of figure 1 in order to compute its limit equilibrium point. The way in 
which this limit equilibrium point is approached exhibits an interesting phenom- 
enon which is important for the interpretation of perfect equilibrium points. 
Later we shall show that every equilibrium point of type 1 is perfect. 

Let el, e2 .... be a monotonically decreasing sequence of positive probabilities 
with el < �88 and •k ~ 0 for k ~ oe. Let F be the game of figure 1. Consider the 
following test sequence rl , /~2 .... for F. For k = 1,2 .... the perturbed game 
/~k= (F, t/k) is defined by t/k = e k for every choice c of F. 

As in section 7 let pi be the probability of player i's choice R. A behavior strategy 
combination can be represented by a triple p -- (p~, P2, P3). The behavior strategy 
combinations for /~k are  restricted by the condition 

1 - - e k > P i  > ek for i =  1,2,3. (20) 

As we shall see, the perturbed 
pk k k ----- (Pl, P2,pk) whose componen t s  pk are as fol lows:  

game ,Ok has only one equilibrium point 

= 1 - ( 2 1 )  

2ek (22) 
= 1 1--ek  

= ( 2 3 )  
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Equilibrium property  o f  pk: 

In the following it will be shown that pk is an equilibrium point of/~k. Let us 

first look at the situation of player 3. For any p = (Pl, P2, Pa) the realization 
probabilities p ( x l , p )  and p(x2 ,p )  of the vertices xl and x2 in the information 
set of player 3 are given by (24) and (25). 

p ( x l , p )  = 1 - Pl (24) 

p ( X z , p )  = pl(1 - P2). (25) 

Player 3's expected payoff under the condition that his information set is 
reached is 2p(x ,p )  if he takes his choice R and p(x2,p)  if he takes his choice L. 
Therefore P3 is a best reply to p in/~k if and only if the following is true: 

P3 = ek for 2(1 -- P0 < pl(1 -- P2) (26) 

ek <-- P3 <- 1 -- ek for 2(1 -- Pl) = pl(1 -- P2) (27) 

P3 = 1 - ek for 2(1 -- Pl) > pl(1 -- P2). (28) 

In the case of pk we have 

P(x l ,P  k) = ek (29) 

p(x2, pk) = 2ek. (30) 

Therefore it follows by (27) that pk is a best reply to pk. Let us now look at the 
situation of player 2. Here we can see that P2 is a best reply to p in/~k if and only 
if the following is true: 

P 2 = e k  for P 3 > � 8 8  (31) 

ek < P2 -< 1 -- ek for P3 = �88 (32) 

P2 = 1 - e~ for Pa < �88 (33) 

pk is best reply to pk in view of (32). 
p~ is a best reply to p in [k  if and only if the following is true: 

Pl = ek for 3Pa > 4(1 - P2)Pa + P2 (34) 

ek < Pl <-- 1 -- ek for 3 p 3  - -  4(1 - P 2 ) P 3  -1- P2 (35) 

Pl = 1 -- ek for 3p3 < 4(1 -- PE)P3 + P2. (36) 

is a best reply to pk in view of (36). 

Uniqueness o f  the equilibrium point: 
In the following it will be shown that pk is the only equilibrium point of /~k. 

We first exclude the possibility P3 ~ 1/4. Suppose that p is an equilibrium point 
with P3 < 1/4. It follows by (33) that we have P2 = 1 - -  ek. Consequently 3p3 
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is smaller than P2 and (36) yields Pl = 1 - ~ k .  Therefore (28) applies to P3- We 
have Pa = 1 - e, contrary to the assumption P3 < 1/4. 

Now we suppose that p is an equilibrium point with P3 > 1/4. Condition (31) 
yields P2 = 8k. In view of 1 -- P2 > 3/4 condition (36) applies to Pl. It follows 
that (26) applies to Pa contrary to the assumption Pa > 1/4. 

We know now that an equilibrium point p of/~k must have the property P3 - �88 
Obviously (36) applies to an equilibrium point p. We must have Pl = 1 - e  k. 
Moreover neither (26) nor (28) are satisfied by P3. Therefore in view of (27) an 
equilibrium point p has the following property: 

2(1 - Pl) = pl(1 - P2). (37) 

This together with Pl = 1 - ek yields 

2e~ 
= - -  (38) P2 1 -- ek 

Voluntary deviations from the limit equilibrium point: 
For  k ~ oo the sequence pk converges to p* = (1,1,1/4). This is the only limit 

equilibrium point of the test sequence/~ 1, i f 2  . . . . .  

Note that pk is as near as possible to p$ = 1 since ~ is the maximum probability 
1 - •k. Contrary to this p~ is not as near as possible to p~. The probability p~ is 
smaller than 1 - e k by ek(1 + ek)/(1 -- ek). The rules of the perturbed game force 
player 2 to take his choice L with a probability of at least e k but to this minimum 
probability he adds the "voluntary" probability ek(1 + ek)/(1 -- ek). In this sense we 

can speak of a voluntary deviation from the limit equilibrium point. 
The voluntary deviation influences the realization probabilities p(xl,p k) and 

p(X2 ' pk). The conditional probabilities for xl and x2, if the information set of 
player 3 is reached by pk, are 1/3 and 2/3 for every k. It is natural to think of these 
conditional probabilities as conditional probabilities for the limit equilibrium 
point p*, too. The assumptions on the probabilities of slight mistakes which are 
embodied in the test sequence/~ 1,/~2 . . . .  do not directly determine these conditional 

probabilit ies but indirectly via the equilibrium points pk. 

Perfectness of the equilibrium points of type 1" 
In the following it will be shown that every equilibrium point of type 1 is perfect. 

Let p* = (1,1,p]) be one of these equilibrium points. We construct a test sequence 
/~1/~2 .... with the property that p* is a limit equilibrium point of/~1,/~2,... .  

Let el, e2 .... be a decreasing sequence of positive numbers with el < p~/2 and 
ek ~ 0 for k ~ m. The minimum probabilities ~ for the perturbed game /~k = 
(F, t/k) are defined as follows: 

( ek if C is a choice of player 1 or player 3 

= J _2ek.  (39) 
l 1 -- ek if C is a choice of player 2. 
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With the help of arguments similar to those which have been used in the sub- 
section "equilibrium property of pk,,, it can be shown that for k = 1,2 .... the 
following behavior strategy combination /3k ^k ^k ^k = (/31,p2,p3) is an equilibrium point 
of/~k 

/31 = 1 - ek (40) 

2ak 
/32 = 1 (41) 

1 - ~k 

/33 = P~" (42) 

The sequence /~1,/32 .... converges to p*. Therefore p* is a perfect equilibrium 
point. 

Imperfectness of  the equilibrium points of  type 2: 
In the following it will be shown that the equilibrium points of type 2 fail to 

be perfect. Let p* = (0, p~, 1) be an equilibrium point of type 2 and let/~1,/~2 .... 
be a test sequence which has p* as limit equilibrium point. Let pl,p2 .... be a 
sequence of equilibrium points p* of/~k which for k ~ oc converges to p*. For 
every ~ > 0 we can find a number re(e) such that for k > re(e) the following two 
conditions (a) and (b) are satisfied. (a) Every minimum probability r/~ in/~k = (F, ~/k) 
is smaller than e. (b) For i = 1,2,3 we have IP~ - ~1 < ~. For sufficiently small e 
it follows from (a) and (b) that p~ is not a best reply to pk; we must have P2 < e 
for player 2's best reply to pk and p~ cannot be below 1/3 by more than e. This 
shows that p* cannot be the limit equilibrium point of a test sequence. 

10. A Decentralization P r o ~ r t y  of Perfect Equilibrium Points 

In this section it will be shown that the question whether a given behavior 
strategy combination is a perfect equilibrium point or not, can be decided locally 
at the information sets of the game. The concept of a local equilibrium point will 
be introduced which is defined by conditions on the local strategies. As we shall 
see, in perturbed games these local conditions are equivalent to the usual global 
equilibrium conditions. On the basis of this result a decentralized description 
of a perfect equilibrium point will be developed. 

Notational convention: 
Let F be an extensive game and let bi be a behavior strategy of a personal 

player i in F. Let b'~. be a local strategy at an information set u of player i. The 
notation bib's, is used for that behavior strategy which results from bi if the local 
strategy assigned by b~ to u is changed to b'~, whereas the local strategies assigned 
by b~ to other information sets remain unchanged. Let b = (b 1,..., b.) be a behavior 
strategy combination. The notation bib's, is used for the behavior strategy com- 
bination b/bl with b'~ = b.]b'~.. The set of all local strategies at u is denoted by B~. 
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Local best replies: 
Let b = (b 1 . . . . .  b,) be a behavior strategy combination for an extensive game 

F and let b~, be a local strategy at an information set u of a personal player i. The 
local strategy ~ ,  is called a local best reply to b in F if we have 

Hi(b/F)J = max HJb/b'i,). (43) 
biu~Biu 

Local best replies in a perturbed game /~ = (F,t/) are defined analogously: 
gi, is a local best reply to b in ~ if we have 

Hz(b/~,) = max H~(b/b'iu) (44) 

where/~i, is the set of all local strategies at u for ft. 

Conditional realization probabilities: 
Let r = (F,t/) be a perturbed game of an extensive game F with perfect recall. 

For  every information set u of a personal player i and every behavior strategy 

combination b = (bl, ...,b,) for/~ we define a conditional realization probability 
/~(x,b): 

p(x,b) (45)  
= p ( y , b )  ' 

Obviously p(x,b) is the conditional probability that x is reached by the play 
if b is played and u is reached. Since p(x,b) is positive for every vertex x, the con- 
ditional realization probability #(x,b) is defined for every vertex x. Let x be a 
vertex and let z be an endpoint after x. We define a second type of conditional 
realization probability #(x,z,b) which is the probability that z will be reached 
if b is played and x has been reached. Obviously we have 

p(x,z,b) = p(z,b) (46) 
p(x,b) " 

Conditional expected payoff: 
For every information set u of a personal player i in a perturbed game F = (/~, t/) 

of an extensive game F with perfect recall we define a conditional expected payoff 
function H~u for player i at u: 

H~.(b)= ~ p(x,b) ~ #(x,z,b)h(z). (47) 
x E u  z after x 

H~(b) is the conditional expectation of player i's payoff under the condition 
that b is played and u is reached by the play. 

Lemma 4: 
Let b = (b~ .. . . .  b,) be a behavior strategy combination for a perturbed game 

/~ = (F, ~/) of an extensive game F with perfect recall. The conditional realization 
probabilities #(x,b) do not depend on b~. 



44 R. SELTEN 

Proof: 
In a game with perfect recall the information sets u of a personal player i have 

the property that the same choices of player i are on every path to a vertex x �9 u. 
Therefore p(x,b) does not depend on b i. 

Lemma 5: 
Let b = (b~ ... . .  b,) be a behavior strategy combination for a perturbed game 

/~ = (F, q) of an extensive game F with perfect recall and let blu be a local strategy 
for/~ at an information set U of a personal player i. The local strategy ~;, is a 
local best reply to b in P if and only if the following is true: 

Hiu(b/b~ ) = max H~(b/bi~). (48) 

Proof: 
The assertion of the lemma follows from the fact that the local strategy at u 

does not influence the realization probabilities of endpoints which do not come 
after vertices of u. 

Lemma 6: 
Let b = (bl .... ,b,) be a behavior strategy combination for a perturbed game 

F = (F,r/) of an extensive game F with perfect recall and let ~ be a behavior 
strategy for a personal player i in/~. The behavior strategy ~z is a best reply to b 
in/~ if and only if for every local strategy ~;u assigned to an information set u �9 Ui 
by ~ the local strategy ~ ,  is a local best reply to b/~z in/~. 

Proof: 
Suppose that for some u �9 U~, the local strategy ~u is not a local best reply to 

bff)~ in/~. Let b'~u be a local best reply to b/~ at u in/~. According to the definition 
of a local best reply b'~ = b~/biu yields a higher payoff for player i than ~, if the 
other players use their strategies in b. Therefore ~ cannot be a best reply to b in/~. 
It follows that bi~ is a local best reply to b/~i in/~. 

Assume that every g~u is a local best reply to b/~i in/~ and that g; is not a best 
reply to b in/~. The theorem is true if this assumption leads to a contradiction. 
Let b'i be a best reply to b in/~ and let b'~, be the local strategies assigned by b'~ 
to the information sets u �9 U~. Let V~ be the set of all information sets u �9 U~, 
where bz, is different from b'~.. Obviously V~ is not empty. 

In a game with perfect recall an information set u �9 U~ either comes after 
another information set v �9 U~ in the sense that every vertex x �9 u comes after 
a vertex y �9 v or u contains no vertex x which comes after a vertex of v. Therefore 
V~ contains information sets v such that no information set u �9 V~ has vertices 
after vertices of v. Let v be an information set of this kind. 

We can assume without loss of generality that b~' = b~/b~, is not a best 
reply to b in/~. Should b'[ be a best reply to b in/~, then we can use b7 instead 
of b'~ for the purpose of this proof. If the same problem arises again, we can repeat 
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the procedure if necessary several times until finally we find a best reply of player 
i in/~ which suits our purpose. Now we assume that b'z' is not a best reply to b 

in/~. With the notation b/b'j~v for b/b'i' we can write 

Hi(b/b'jb,,) < H~(b/b'3. (49) 

In the following we shall show that bzv is a local best reply to b/b' i in/~. This 
is a contradiction to (49). 

It follows by lemma 4 that we have 

tt (x, b/b'jb~v) = 12 (x, b/bjb~o) (50) 

for every x e v and every local strategy b~ of player i at v. Moreover the information 
set v has been selected in such a way that b'~ and ~i assign the same probabilities 
to choices at information sets u after v. Therefore we have 

U(x,z, b/b'jb,~) = #(x, z, b/bjb,,) (51) 

for every local strategy b~v at v and for every x e v. (47) together with (50) and (51) 

yields H~,(b/b'jbzv) = (H~,(b/bjb~O. (52) 

Since b~, is a local best reply to b/~ it is a consequence of lemma 5 and equation 
(52) that b~v is a local best reply to bib's. This contradiction to (49) completes the 
proof of lemma 6. 

Local equilibrium points: 
A behavior strategy combination b * =  (b~ ... . .  b~) for an extensive game F 

is called a local equilibrium point for F or for a perturbed game P of F if every 
local strategy b~. which is assigned to an information set u by one of the b~ is a 
local best reply to b in F or F, resp. 

Lemma 7: 
A behavior strategy combination b * =  (b~' .... ,b~) for a perturbed game 

P = (F,r/) of an extensive game F with perfect recall is an equilibrium point 
for/~, if and only if b* is a local equilibrium point for F. 

Proof: 
The lemma is an immediate consequence of lemma 6. 

Local limit equilibrium points: 
Let r l ,  P 2 .... be a test sequence for an extensive game F with perfect recall. 

A behavior strategy combination b * =  (b]' ..... b*) for F is called a local limit 
equilibrium point of the test sequence/~1,/~2 .... if every pk has a local equilibrium 
point b k such that for k -~ oe the sequence of the b k converges to b*. 

Theorem 3: 
A behavior strategy combination b * =  (b'~ .. . . .  b*) for an extensive game F 

with perfect recall is a perfect equilibrium point of F, if and only if for at least 
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one test sequence/~,  f2  .... for F the behavior strategy combination b* is a local 
limit equilibrium point of the test sequence f l ,  f2  . . . . .  

Proof: 
The theorem is an immediate consequence of lemma 7 and the definition of 

a perfect equilibrium point. 

11. The Agent Normal Form and the Existence of a Perfect Equilibrium Point 

In this section the concept of an agent normal form will be introduced. The 
players of the agent normal form are the agents of the information sets described 
by H. W. Kurr~ [1953] in his interpretation of the extensive form. An agent 
receives the expected payoff of the player to whom he belongs. The agent normal 
form contains all the information which is needed in order to compute the perfect 
equilibrium points of the extensive game. With the help of the agent normal 
form one can prove the existence of perfect equilibrium points for extensive 
games with perfect recall. : 

The agent normal form: 
Let F be an extensive game and let Ul,...,UN be the information sets of the 

personal players in F. For  i = 1 ..... N let ~b i be the set C,i of all choices at u~. 
In the following we shall define a normal form G = (~bl,...,~bN, E) where the 
players 1 .. . . .  N are thought of as agents associated with the information sets 

u~ ... . .  UN. This normal form is called the agent normal form of F. 
Let ~b be the set of all pure strategy combinations ~o = (~o~, ...,~on) for G. For  

every ~0 ~ ~b the expected payoff vector E(~o) = (El(q~), ...,E,(q~)) is defined as 
follows: Let 7t = (z~ ..... re,) be the pure strategy combination for F whose com- 
ponents assign the choice ~oj ~ ~bj to every information set uj. For  this n we have 

Ei(q~ ) = Hj(Tz) for u i~ Uj. (53) 

The expected payoff function E is extended to the mixed strategy combinations 

q = (qt," ' ,qN) of G in the usual way. 

Induced strategy combinations: 
Let b = (bl,...,b~) be a behavior strategy combination for F and let q = 

(q~,-..,qN) be a mixed strategy combination for the agent normal form G of F. 
We say that q is induced by b on G and that b is induced on F by q if for i = 1,..., N 
the mixed strategy q,- is the same probability distribution over R~ as the local 
strategy assigned to ui by the relevant component of b. Obviously this use of the 
word "induced" defines a one-to-one mapping between the behavior strategy 
combination b of F and the mixed strategy combinations q of G. 

Perturbed agent normal forms: 
Let G be a normal form G = ~(~b~ ..... ~bN, E) and let r/be a function which assigns 

positive minimum probabilities r/C to every c e 0~ with i = 1 ..... N, subject to the 
restriction 
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,7c < 1 .  (54) 

The pair G = (G,t/) is called a perturbed normal form of G. A mixed strategy q~ 
for G is a mixed strategy for G = (G,t/) if qi satisfies the following condition: 

qi(c) >_ tl~ for every c e  q~i. (55) 

A mixed strategy combination q = (q~,...,qN) is called a mixed strategy com- 
bination for G = (G,t/) if for i = 1 ..... N the mixed strategy ql is a mixed strategy 
for G. The set of all mixed strategies q~ of player i in G is denoted by (2~. 

Let F be an extensive game and let G be the agent normal form of F. Obviously 
a behavior strategy combination for the perturbed game/~ = (F,t/) is induced 
on F by every mixed strategy combination for the perturbed normal form G = 
(G,r/) and vice versa. We call t~ the perturbed agent normal form of/~. 

Equilibrium points: 
A mixed strategy ~i of a player i in a perturbed normal form G = (G,t/) is 

called a best reply to G to the mixed strategy combination q = (qt .... ,qN) for 

if we have 
E~(q/gti) = max El(q/q). (56) 

A mixed strategy combination ~ = (qx,..-,q~) is called a best reply to q in ~, 
if every qs in ~ is a best reply to q in G. A mixed strategy combination q* for d 
is called an equilibrium point of G, if q* is a best reply to itself in G. 

Lemma 8: 
Let (~ = (G,r/) be the perturbed agent normal form of the perturbed game 

/~ = (F,r/) of an extensive game F with perfect recall. An equilibrium point of 
/~ is induced on F by every equilibrium point of G and an equilibrium point of 

is induced on G by every equilibrium point of/~. 

Proof: 
It is clear that a local best reply in/~ corresponds to a best reply in G. Therefore 

the assertion follows by lemma 7. 

Perfect equilibrium points: 
A test sequence ~1 ,~2  ... .  for a normal form G = (051 ... . .  05N, E) is a sequence 

of perturbed normal forms ~k = (G,/~k) of G such that for k - ,  m the sequence 
of the t/k converges to 0 for every c in the sets Ri. A limit equilibrium point q* of 
a test sequence ~1, ~2 .. . .  is a mixed strategy combination for G, such that there 
is at least one sequence ql, q2 . . . .  of equilibrium points qk for ~k which for k --, 
converges to q*. A perfect equilibrium point of G is a mixed strategy combination 
q* for G which is a limit equilibrium point of at least one test sequence all, ~2 .... 
for G. 
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Lemma 9: 
A limit equilibrium point q* of a test sequence d i ,  d2 .... for a normal form G 

is an equilibrium point of G. 

Proof: 
The proof is omitted here since it is completely analogous to the proof of 

lemma 3. 

Theorem 4 : 
Let F be an extensive game with perfect recall and let G be the agent normal 

form of F. A perfect equilibrium point of F is induced on F by every perfect 
equilibrium point of G and a perfect equilibrium point of G is induced on G by 
every perfect equilibrium point of F. 

Proof: 
It follows by lemma 8 that a one-to-one relationship between the test sequences 

for F and for G can be established where a perturbed game of F corresponds to 
its perturbed agent normal form. Therefore a limit equilibrium point of one of 
both sequences induces a limit equilibrium point of the other one. 

Existence of perfect equilibrium points: 
In the following it will be shown that every extensive game F with perfect 

recall has at least one perfect equilibrium point. In order to prove this, we make 
use of theorem 4. 

Theorem 5: 
Every normal form G has at least one perfect equilibrium point. 

Proof: 
A perturbed normal form d = (G,~/) satisfies well known sufficient conditions 

for the existence of an equilibrium point in mixed strategies [see e.g. BURGER, 
1958, p. 35, Satz 2]. Therefore every perturbed normal form dk in a test sequence 
G1,G 2 .... for G has an equilibrium point qk. Since the set of all mixed strategy 
combinations is a closed and bounded subset of an eucledian space, the sequence 
ql,q2 .... has an accumulation point q*. The sequence qt,qa .... has a subsequence 
which converges to q*. The corresponding subsequence of the test sequence 
(~1,d2 .... is a test sequence with the limit equilibrium point q*. Therefore q* 
is a perfect equilibrium point of G. 

Theorem 6: 
Every extensive game F with perfect recall has at least one perfect equilibrium 

point. 

Proof: 
In view of theorem 5 the agent normal form of F has a perfect equilibrium 

point. It follows by theorem 4 that F has a perfect equilibrium point. 
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12. Characterization of Perfect Equilibrium Points as Best Replies to 
Substitute Sequences 

In this section it will be shown that the definition of a perfect equilibrium 

point  as a limit equilibrium point of a test sequence is equivalent to another  

definition which is more advantageous  from the point  of view of mathematical  

simplicity. In view of theorem 4 we can restrict our  at tention to perfect equilibrium 

points for normal  forms. It is sufficient to analyse the agent normal  form if one 

wants to find the perfect equilibrium points of an extensive game with perfect 

recall. It is impor tant  to point out that  it is not  sufficient to analyse the ordinary 

normal  form. This will be shown in section 13 with the help o f a  counterexample." 

Substitute sequences: 
Let G = (H~ ..... FI,,;H) be a game in normal  form. A mixed strategy qi of 

player i is called completely mixed if for every =~ 6 H i the probabili ty q~(=,.) assigned 

to =i by qi is positive. A 'mixed strategy combina t ion  q = (q~ .. . . .  q,) is called 

completely mixed if qi is completely mixed for i = 1 . . . . .  n. Let 0 = (7/1 . . . . .  g/n) 

be a mixed strategy combina t ion  for G. An infinite sequence of mixed strategy 
combina t ions  qJq2 .... is called a substitute sequence for g:/ if qk converges to 

for k ---, ~'. and every qk is completely mixed. A strategy qi or  a strategy combina t ion  

q is called a he.st reply to the substitute sequence qJ,q2 .... ifq~ or q, resp. is a best 

reply to every qk in the sequence. 

Substitute peJject equilibrium points: 
A mixed strategy combina t ion  q* = (q* . . . . .  q*) for a normal  form G is called 

a substitute perfect equilibrium point of G if q* is a best reply to at least one sub- 

stitute sequence for q*. 

Lemma 10: 
A substitute perfect equilibrium point  of a normal  form G is an equilibrium 

point  of G. 

Proof: 
Let q* be a best reply to the substitute sequence q lq2  .... for q*. For  k = 1,2 .... 

and for i = 1 ..... n we have 

Hi(qk/q~) = max Hi(qk/qi). (57) 
qi~Qi 

In view of the continuity of H i and the continuity properties of the maximum 

opera tor  it is clear that  (57) remains valid if on both sides we take limits for k --+ m. 
This shows that q* is an equilibrium point. 

Associated perturbed normal Jorms : 
Let G = (H 1 . . . . .  Hn;H) be a normal  form, let q = (qj . . . . .  qn) be a completely 

mixed strategy combina t ion  for G and let ~ be a positive number  such that for 
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i = 1 .. . . .  n we have qi(7ci) > e for every ~r~eH~. For  every triple (G,q,e) of this 

kind we define an associated perturbed normal  form 0 - (G,~I), where the mini- 

mum probabilities of the pure strategies for G are as follows: 

[q~(rq) if rc~ is not a best reply to q in G 
~1~, = ~ (58) 

{. e. if ~ is a best reply to q in G 

for i = l . . . . .  n and for every =~ +//~. Obviously *1 satisfies the condit ion that the 

min imum probabilities for all pure strategies of a player sum up to less than 1. 

Lemma 11 : 
Let d = (G,~l) be the associated perturbed normal  form for the triple (G,q,e). 

The strategy combinat ion  q is an equilibrium point  of 0.  

Proof: 
A mixed strategy is a best reply to q in 0 if the pure strategies which are not 

best replies to q in G are used with their min imum probabilities. In view of (58) 

this is the case for every componen t  q~ of q. 

Lemma 12: 
A substitute perfect equilibrium point of a normal  form G is a perfect equilibrium 

point  of G. 

Proof: 
Let q* = (q~ .. . . .  q*) be a substitute perfect equilibrium point for G and let 

qJ,q2 .... be a substitute sequence for q* such that q* is a best reply to qlq2 . . . . .  
Let gl, e2 .... be a sequence of positive numbers  with e k -+ 0 for k -+ m, such that 

for k = t ,2 .... and for i = 1 . . . . .  n we always have q~(=~) > ek for every =i e Hi. 

Since every qk is completely mixed we can find a sequence ej,c,2 .... of this kind. 

Let 0 k = (G,~I k) be the perturbed normal  form associated with the triple (G,qk, ek). 
In the following it will be shown that 0 1  02 .... is a test sequence for G. Obviously 

for k -+  ,m those minimum probabilities which are equal to e,~ converge to 0. 

Consider  a pure strategy r~r + H i which is not  a best reply to q*. For  this pure 

strategy we must have q*(=~) = 0. Therefore for k --+ m the min imum probabilities 

of pure strategies which are not  best replies to q* converge to 0, too. Consequently,  

GI ,02  .... is a test sequence of G. 
The sequence q~q2 .... is a sequence of equilibrium points qk for the perturbed 

game O k in a test sequence 01,G 2 .... for G. This follows by lemma 11. Moreover  

the sequence qlq2 .... converges to q*. Therefore q~ is a limit equilibrium point 
of the test sequence 0 J , 02 . . . . .  Consequently qk is a perfect equilibrium point of G. 

Theorem 7: 
A mixed strategy combina t ion  q* = (q* . . . . .  q*) is a perfect equilibrium point 

of G, if and only if q* is a substitute perfect equilibrium point of G. 
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Proof'. 
In view of lemma 12 it remains to be shown that a perfect equilibrium point 

q* of G is substitute perfect. Let (~t~2 .... be a test sequence for G, such that q* 
is a limit equilibrium point of all, d2 . . . . .  Let q l, q2 .... be a sequence of equilibrium 
points qk for (~k which converges to q*. The definition of a perfect equilibrium 
point requires that such sequences (~1,d2 .... and q~,q2 .... exist. 

Let T~ k be the set of all those pure strategies ofplayer  i which appear with more 
than minimum probability in qk, i.e. ~i is in T~ k, if and only if we have q~(~zi) > ~1~, 
for player i's component qf in qk. Obviously a pure strategy ~zs e T~ k is a best reply 
qk in G but T~ k may not contain every pure best reply to qk in G. Since the qk converge 
to q* and the ~l~, converge to 0, there must be a number m, such that for k > m 
every pure strategy r~z with q~(~s) > 0 is in T~ k for i = 1 ..... n. Without loss of 
generality we can assume m = 0 since otherwise we can use subsequences of the 
original sequences (~,(~2,... and ql,q2 .... for the purpose of this proof. 

Since every ~z with q~(~i) > 0 is in T~ k and every r~ i e T~ k is a best reply to qk in 
G, the mixed strategy q~ is a best reply to 9 k for k = 1, 2 . . . . .  The qk are completely 
mixed and q~,q2 .... converges to q*. The sequence ql,q2 .... is a substitute sequence 
for q* and q* is a best reply to this sequence, q* is a substitute perfect equilibrium 
point. 

13. Two Counterexamples 

One might be tempted to think that a perfect equilibrium point of the normal 
form G of an extensive game F with perfect recall always corresponds to a perfect 
equilibrium point of F. If this were tne case one would not need the agent normal 
form. In the following we shall present two counterexamples. The first one is 
quite simple but less satisfactory than the second one. 

The f irst  counterexample : 
The extensive game of figure 2 has exactly one perfect equilibrium point, 

namely the pure strategy combination (Rr, L). Here Rr refers to that pure strategy 
of player 1 where he chooses R at the origin and r at his other information set. 
The fact that this is the only perfect equilibrium point follows immediately by the 
subgame perfectness of perfect equilibrium points. (See the corollary of theorem 2 
in section 8). 

In the normal form (Rr, L) is a perfect equilibrium point, too but not the only 
one. Since the strategies Rl and Rr are equivalent (Rl, L) is just as perfect in the 
normal form as (Rr, L). In a perturbed game of the extensive form the strategies 
Rl and Rr  are not equivalent but this information is lost in the normal form and 
cannot be regained by the construction of perturbed normal forms. 

The first counterexample is not quite satisfactory since one may be content 
with the fact that among the two equivalent perfect equilibrium points of the 
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normal form, there is one which is perfect in the extensive form. One may take 

the point of view that it is not important  to distinguish between these two equi- 
librium points. 

r;r 2 Ll o 2 

n O 
Lr 3 2 

~1 1 1 
1 1 

1 1 q r  
1 1 

Fig. 2. Extensive form and normal form for the first counterexample, The conventions of the graphical 
representation of the extensive form are explained at figure 1 

The second counterexample: 
Consider the equilibrium points (R1, L2, R3) and (Rr, L2, R3) of the game of 

figure 3. As we shall see both of these equilibrium points are perfect in the normal 

form but they fail to be perfect in the extensive form. 

Perfectness in the normal form: 
It is sufficient to show that (RI, L2, R3) is a perfect equilibrium point of the 

normal form, if this is the case the same must be true for (Rr, L2, R3) since in the 
normal form Rr is a duplicate of RI. 

In order to show the perfectness of (RI, L2, R3) we construct the following 
substitute sequence q~,qZ,... : In q~ every pure strategy which does not occur in 

(RI, L 2, R3) is used with a small probability e k. The pure strategies RI, L z and R 3 
are used with probabilities 1 - 3 ek, 1 - s k and 1 - ek, resp. The ek are selected 
in such a way that al,e 2 .... is a decreasing sequence which converges to 0. Of 
course e 1 must be selected sufficiently small, say a~ < 1/100, 

It can be verified easily that (Rl, L 2, R3) is a best reply to this substitute sequence. 
We omit the computational  details. It follows by theorem 7 that (Rl, L2, R3) and 
(Rr, L 2, R3) are  perfect equilibrium points for the normal form of the game of 
figure 3. 

Imperfectness of (Rl, L2, R3) in the extensive form: 
Let b~,b 2 .... be a sequence of behavior strategy combinations with completely 

mixed local strategies for the game in figure 3 such that b k converges to (R1, L2, R3) 
for k ~ ~ .  We may call bl,b 2 .... a substitute sequence for (R1, L 2, R3). According 
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to theorems 4 and 7 the equilibrium point (Rl, L2, g3) cannot be perfect unless 
there is at least one such sequence with the property that the choices in (Rl, L2, R3) 
are local best replies to every b k. In order to see this one just has to translate the 
terminology of the agent normal form into that of  the extensive form. 

For every e there is a number m (e) such that for k > rn(0 the probabilities 
prescribed by b k to the choices selected by (R1, L2, R3) are greater than 1 - e. 
It can be seen immediately that for sufficiently small e the local best reply for 
player 1 is r, not I. This shows that the sequence b ~, b z ... .  cannot be such that 
(Rl, L2, R3) is a best reply to every b k. Consequently (Rl, L2, R3) fails to be a 
perfect equilibrium point of the extensive game of figure 3. 

i[ i!I )o o 
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L 2 R 2 

1 2 
LI 3 o 

0 0 

] 0 
L r  

3 O 
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Rr [ O O 

L �9 O O 

L 3 

L 2 

1 2 
LI 3 

0 

Lr 1 4 
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3 3 
Rl O 

3 

3 3 
~r O 
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R 3 

R 2 

O 
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O 
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Fig. 3. Extensive form and normal form for the second counterexample. The normal form is described 
by two trimatrices, one for player 3's choice L 3 and one for his choice R 3 
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Imperfectness of (Rr, L2, R3) in the extensive form: 
In the same way as before let bl,b 2 .... be a sequence of behavior strategy 

combinations with completely mixed local strategies which converges to (Rr, 
L2, R3). Here, too, for sufficiently big k the choices in (Rr, L2, R3) have probabilities 
greater than 1 - e in b k. It can be seen immediately that for sufficiently small e 
player 2's best reply to b k is R 2. Therefore the sequence bl,b 2 .... cannot be such 

that (Rr, L2, R3) is a best reply to every b k. Consequently (Rr, L 2, R3) fails to be a 
perfect equilibrium point of the game of figure 3. 

Interpretation: 

In the following we shall try to give an intuitive explanation for the phenomenon 
that an equilibrium point which is perfect in the normal form may not be perfect 
in the extensive form. 

In order to compare the normal form definition with the extensive form defini- 
tion, we shall look at a perturbed game/~ of an extensive game r with perfect 
recall and at a perturbed normal form G of the normal form G ofF. Let the behavior 
strategy combination b k = (hi ..... bk,) be an equilibrium point for/~ and let the 
mixed strategy combination q* = (q~ ..... q,~) be an equilibrium point for G. 

A choice c in F is called essential for b* if the relevant local strategy selects c 
with more than the minimum probability for c required by/~. A choice which is 
essential for b k must be a local best reply to b k in F. 

A pure strategy n~ is called essential for qk if q~'(ni) is greater than the minimum 
probability for rq required by (~. A pure strategy which is essential for q* must be 

a best reply to q* in F. 
Both b* and q* reach all parts of the extensive form in the sense that the reali- 

zation probabilities of all vertices are positive. Nevertheless there is a crucial 
difference between b* and q*. This difference concerns the conditional choice 
probabilities #~(c,u,q~) which have been defined with the help of lemma 1 and 
lemma 2 in the proof of KUHN'S theorem. In the case of q* these conditional 
choice probabilities are defined for every personal information set. 

It may happen that player i's pure strategies which are essential for q* are such 
that a given information set u is not reached by q*/n~ for every one of these essential 
strategies n~; the realization probabilities p(x,q*/n~) are 0 for every x ~ u. An 
information set u of this kind will be called inessentially reached by q*. 

If an information set u of player i is inessentially reached by q*, then the con- 
ditional choice probabilities I~(C,u,q*) will be exclusively determined by those 
pure strategies of player i which are inessential for q*. Therefore the tz~(c,u,q*) 
may be very unreasonable as a local strategy at u. 

The crucial difference between b* and q* is as follows: Whereas every local 
strategy in b* is reasonable in the sense that the essential choices are local best 
replies, qk may lead to unreasonable conditional choice probabilities at those 
information sets which are inessentially reached by q*. 
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As an example let F be the game in figure 3 and let q* be such that only the 

pure strategies in the equilibrium point (Rr, L2, R3) are essential for q*. The 
information set of player 1, where he chooses between l and r is inessentially 
reached. Therefore the conditional choice probabilities for l and r are not deter- 
mined by Rr but exclusively by the minimum probabilities for Ll and Lr  which 
may be such that l is selected with a high conditional choice probability. 

In an extensive game, where every player has at most one information set, 
it cannot happen that the information set of a player i is not reached by q*/rrs 
for one of his pure strategies ~z~. His strategy does not influence the realization 
probabilities of the vertices in his information set. The agent normal form corre- 
sponds to an extensive form where every player has at most one information set. 
Therefore no difficulties arise in the agent normal form. 
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